Motion area V5/MT+ response to global motion in the absence of V1 resembles early visual cortex

نویسندگان

  • Sara Ajina
  • Christopher Kennard
  • Geraint Rees
  • Holly Bridge
چکیده

Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently known about such alternative inputs to V5/MT+ and how they may drive and influence its activity. Using functional magnetic resonance imaging, the response of human V5/MT+ to increasing the proportion of coherent motion was measured in seven patients with unilateral V1 damage acquired during adulthood, and a group of healthy age-matched controls. When V1 was damaged, the typical V5/MT+ response to increasing coherence was lost. Rather, V5/MT+ in patients showed a negative trend with coherence that was similar to coherence-related activity in V1 of healthy control subjects. This shift to a response-pattern more typical of early visual cortex suggests that in the absence of V1, V5/MT+ activity may be shaped by similar direct subcortical input. This is likely to reflect intact residual pathways rather than a change in connectivity, and has important implications for blindsight function. It also confirms predictions that V1 is critically involved in normal V5/MT+ global motion processing, consistent with a convergent model of V1 input to V5/MT+. Historically, most attempts to model cortical visual responses do not consider the contribution of direct subcortical inputs that may bypass striate cortex, such as input to V5/MT+. We have shown that the signal change driven by these non-striate pathways can be measured, and suggest that models of the intact visual system may benefit from considering their contribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Op-brai140329 164..178

Motion area V5/MT+ shows a variety of characteristic visual responses, often linked to perception, which are heavily influenced by its rich connectivity with the primary visual cortex (V1). This human motion area also receives a number of inputs from other visual regions, including direct subcortical connections and callosal connections with the contralateral hemisphere. Little is currently kno...

متن کامل

Evidence for fast signals and later processing in human V1/V2 and V5/MT+: A TMS study of motion perception.

Evidence from human and primate studies suggests that fast visual processing may utilize signals projecting from primary visual cortex (V1) through the dorsal stream, to area V5/MT+ or beyond and subsequently back into V1. This coincides with the arrival of parvocellular signals en route to the ventral pathway and infero-temporal cortex. Such evidence suggests that the dorsal stream region V5/M...

متن کامل

Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy

Head movement imposes the additional burdens on the visual system of maintaining visual acuity and determining the origin of retinal image motion (i.e., self-motion vs. object-motion). Although maintaining visual acuity during self-motion is effected by minimizing retinal slip via the brainstem vestibular-ocular reflex, higher order visuovestibular mechanisms also contribute. Disambiguating sel...

متن کامل

Double dissociation of V1 and V5/MT activity in visual awareness.

The critical time windows of the contribution of V1 and V5/MT to visual awareness of moving visual stimuli were compared by administering transcranial magnetic stimulation (TMS) to V1 or V5/MT in various time intervals from stimulus offset during performance of a simple motion detection task. Our results show a double dissociation in which the critical period of V1 both predates and postdates t...

متن کامل

Motion-Sensitive Neurones in V5/MT Modulate Perceived Spatial Position

Until recently, it was widely believed that object position and object motion were represented independently in the visual cortex. However, several studies have shown that adaptation to motion produces substantial shifts in the perceived position of subsequently viewed stationary objects. Two stages of motion adaptation have been proposed: an initial stage at the level of V1 and a secondary sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 138  شماره 

صفحات  -

تاریخ انتشار 2015